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ceiver was located at the axis of the deep suund channel (1250 m) at a,,/
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20. (Continued)

, naximum range of 1300 km. The acoustic path crossed several seamounts of the
Corner Seamount Group. The highest of these peaks rose to the sound axis. This
paper presents the relative enhancement of signal level for SOFAR propagation
due to these seamounts as a function of source depth and frequency. The enhance-
ment was minimal for the 1230-m shots, while the greatest enhancement occurred
for the 18-m shots at the 50-Hz filter band. This implies these seamounts and
other topographic features such as the mid-Atlantic Ridge can significantly
increase the coupling of low-frequency ship-generated noise into the deep
sound channel.
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TD 6523

Long-Range Sound Propagation Across Atlantic Ocean
Seamounts: Implications for Ambient Noise

Introduction

Of the possible effects that seamounts can have on sound propagation, perhaps
the most important is the scattering of ship generated low frequency noise in or out
of the deep sound channel. As addressed by Wagstaff in last month's JASA, the
slope conversion phenomenon is a major contributing mechanism in the generation
of SOFAR channel noise.

Unlike controlled experiments where the peak of a single seamount is precisely
crossed, a transiting ship crosses seamounts randomly and typically encounters
groups of seamounts that have various slopes and heights. It is hard to anticipate
what enhancement or shadowing might result so we sought to analyze a typical
transit to quantify the effect.

Fortunately, data have recently become available from a long range
propagation experiment conducted in the winter that encountered conditions
similar to a ship transit across a group of seamounts. It is an analysis of these data
we report here.

- Slide on, please. -
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Slide 1

The propagation experiment was conducted along a course running 900
nautical miles from Bermuda eastward toward the mid-Atlantic Ridge. At a range
of approximately 650 nautical miles, the group of peaks known as the Corner
Seamounts was first encountered. Continuing along the track, a series of peaks were
crossed in a random fashion for the next 250 nautical miles. As underwater features
go, these seamounts are quite steep - with slopes in the neighborhood of 20 to 25
degrees - but seem representative of those in the North Atlantic. From ray theory,
we know that rays emanating from a source at 50 degrees will effectively strike the
slope at a relative angle of 25 degrees and then be reflected such that they are
parallel to the sea surface. It is, thus, apparent that these data should depend on
bottom loss that is a function of frequency and grazing angle as well as the slope of
the topographic features.

Next slide, please. -
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Slide 2

The data were received on a hydrophone of the broadband array that was
suspended at the sound channel axis - nominally 1250 meters - and was located
near Bermuda. The sound sources were standard SUS charges detonated at four
depths (18, 154, 615, and 1230 meters) and dropped uniformly from a ship tran-
siting out along the track.

As the representative sound speed profile on the right shows, there was a depth
excess along the track until the seamount group was reached. The critical depth is
indicated by the horizontal dashed line.

- Next slide, please. -
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Slide 3

The bottom topography along the track is shown here with the receiver site
located on your left. The sound channel axis is indicated by the upper dashed line
and the critical depth or lower boundary of the deep sound channel is indicated by
the lower dashed line. Though it would be barely discernible on this scale there
exists a well defined surface channel near the seamounts for all source depths down
to about 150 meters, which is not present nearer Bermuda.

The first peak to stick up into the sound channel is encountered at a range of
650 nautical miles. This will be designated as seamount in the following data slides.

," The next peak is about 50 nautical miles farther along the track and the highest peak
- reaching the sound channel axis - occurs at a range of 750 nautical miles. From
there a series of smaller peaks continue out past a range of 900 nautical miles.

Again, the observed peaks are usually not the maximum height of each
seamount but represent a typical ship transit across the Corner Seamount Group.

- Next slide, please. -
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Slide 4

We present our data as propagation loss curves for various frequencies as a
function of range for each of the four source depths.

The first results are from the 1230 meter sources at the sound channel axis.
With both source and receiver at the axis, the energy should be concentrated in low
angle rays.

We do see an increase in energy loss for frequencies of 200 Hz and less, starting
at a range of 700 nautical miles. It requires a peak rising to the axis to affect sound
in this case. We can't conclude from these data if there is a frequency dependence.

This particular result indicates that sound traveling along the axis - typically
from ranges still further on - can be at least partially blocked by these seamounts.

- Next slide, please. -
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Slide 5

For shots detonated at 615 meters - halfway between the surface and sound
channel axis - the change in the rate of loss occurs at the same range - 700
nautical miles. This change in slope is larger and does have a frequency dependence;
however, the loss observed in the 100 to 200 Hz range is the largest we found, in-
dicating that we are at least near the optimum conditions for loss for these
seamounts.

- Next slide, please. -
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Slide 6

As we detonate sources nearer the surface and very near the bottom of the
surface channel at 154 meters, the increased loss starts to show more character
indicating varying contributions from each seamount. The effect now starts at a
range of 650 nautical miles, those first smaller seamounts now have some influence.

The general trend still shows increased loss, although not as great as for the
615-meter shots. However, for the lower frequencies, there is a distinct peak at the
range of the highest seamount. For that particular seamount, we have apparently
crossed over from conditions causing loss to those causing enhancement.

- Next slide, please. -
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Slide 7

As you might expect, we pass through this transition region even more
distinctly with the results for the shallowest (18 meters) sources.

The 200 Hz data still turns down but the 100 Hz data literally oscillates,
resulting in almost no average change. Both the 25 and 50 Hz data show a large
enhancement. We can see that these seamounts could definitely increase the noise
level at the sound channel axis from ships.

- Next slide, please. -
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Slide 8

We thought it would make an interesting comparison to show the effect at 25
Hz for the 18-meter shots (top) and for the 154-meter shots (bottom).

The normal propagation loss is indicated by the dashed line in both cases. You
can see that by a relatively small change in source depth alone, we obtain significant
changes in propagation.

J - Next slide, please. -
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Slide 9

To see if enhancement from shallow sources crossing seamount groups has
been observed elsewhere, we found similar results from the New Zealand ex-
periment, Project SPAN 3. Here we have 4 radial tracks from a receiver located at
the sound channel axis (1 km) near the center of the South Fiji Basin. Normal
propagation loss is shown by a solid line. The frequency is 63 Hz. In the upper left-
hand corner propagation loss is not affected by bathymetry as you would surmise.
In the upper-right hand corner, peaks reach the sound channel axis and you can see,
as with our data, the effective general enhancement of large topographic features.

- Next slide, please. -
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Conclusions

1. Any Features in the Sound Channel Can Have as an Effect:
* Enhancement
* Shadowing
* Combination Thereof

2. Effects are Most Noticeable at:
* Low Frequencies - 50 Hz
* Shallow Sources - 20 m
0 Steep Slopes - 200

3. Seamounts Can Increase Ship Generated Noise in the
Sound Channel

Slide 10

In conclusion what do these data show?

First, under realistic conditions in the winter, seamounts can cause enhan-
cement, shadowing, or a combination there-of. These in turn are dependent on the
height and slope of the features and bottom loss, which in turn is dependent on
frequency and angle of incidence.

Second, enhancement was most notable from low frequencies, shallow sources,
and steep slopes. We observed maximum conditions for loss and a transition from
loss to enhancement as parameters were changed.

Last, for what represented a typical ship transit, ship noise would indeed be
increased in the sound channel by this seamount group, implying a significant in-
crease in heavily trafficked oceans such as the North Atlantic.

Slide off, please. -
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